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The Problem



The Need for Confidentiality and Integrity

● Banking & Finance
● Government & Public Sector
● Telco
● IoT
● HIPAA
● GDPR
● Sensitive enterprise functions
● Defense
● Human Rights NGOs
● ...
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Virtualization Stack
as seen by xkcd (xkcd.com/2166)

https://xkcd.com/2166/


Trusted 
Execution
Environments
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Blocked by CPU



Trusted Execution Environments

TEE

TEE is a protected area within the 
host, for execution of sensitive 
workloads

Host



TEE provides:
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TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Summary
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Q. “But how do I know that it’s a 
valid TEE?”
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Host Attestation



TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Summary

Tenant
TEE

Attestation

Attestation includes:
● Diffie-Hellman Public Key
● Hardware Root of Trust
● TEE Measurement

Code + Data
(Encrypted)

Host



Trusted Execution Models

1. Attestation is discussed here: https://patents.google.com/patent/US20190042463A1/en?oq=20190042463

Process-Based

● Intel SGX (not upstream)
● RISC-V Sanctum (no hardware)

VM-Based

● AMD SEV
● IBM PEF (no hardware)
● Intel MKTME (no attestation¹)

Not a TEE: TrustZone, TPM

https://patents.google.com/patent/US20190042463A1/en?oq=20190042463


Trusted Execution: Process-Based

PROS

● Access to system APIs from Keep

CONS

● Unfiltered system API calls from Keep
● Application redesign required
● Untested security boundary
● Fantastic for malware
● Lock-in



Trusted Execution: Virtual Machine-Based

PROS

● Strengthening of existing boundary
● Run application on existing stacks
● Bidirectional isolation
● Limits malware

CONS

● Hardware emulation
● Heavy weight for microservices
● CPU architecture lock-in
● Duplicated kernel pages
● Host-provided BIOS



Introducing 
Enarx



The Enarx 5-bullet overview
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The Enarx 5-bullet overview

● Uses TEEs (SGX, SEV, etc.) for confidential workloads

● Easy development and deployment using Wasm

● Strong security design principles

● Cloud-native → Openshift, kubernetes

● Open source: project, not production-ready (yet)



Where do we want to be?

Enarx



What’s the full picture?

27

Enarx Keep
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Enarx Architecture
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CONFIDENTIAL Designator

SGX demo

https://docs.google.com/file/d/1t_j-HzQyM0B_mEg_cP6vGaEjTLJnBk_9/preview
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CONFIDENTIAL Designator

SEV demo

https://docs.google.com/file/d/12j-bPD3La2ld84w7q2HhTM5hJQIgrVf4/preview
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Layers - process-based Keep
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Where we’d like to be
Where we are

Same binary
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Where we’d like to be next

One binary

CPU (AMD)
Kernel

Loader (VMM) 
Shim

Enarx

Kernel
Loader
Shim

CPU (Intel)

Wasm binary

WASM (JIT)
WASI

Enarx



We are an open project

50

● Code
● Wiki
● Design
● Issues & PRs
● Chat
● CI/CD resources
● Stand-ups
● Diversity

✓ GitHub
✓ GitHub
✓ GitHub
✓ GitHub
✓ Rocket.Chat (Thank you!)
✓ Packet.io (Thank you!)
✓ Open to all
✓ Contributor Covenant CofC



We Need Your Help!

51

Website: https://enarx.io

Code: https://github.com/enarx

License: Apache 2.0

Language: Rust

Daily stand-ups open to all! 
Check the website wiki for 
details.

https://enarx.io
https://github.com/enarx
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Website: https://enarx.io

Code: https://github.com/enarx

License: Apache 2.0

Language: Rust

Daily stand-ups open to all! 
Check the website wiki for 
details.
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Questions?

https://enarx.io

https://enarx.io

