
Security and confidential 
computing
axel simon
office of the CTO enarx.io



The Problem



The Need for Confidentiality and Integrity

● Banking & Finance
● Government & Public Sector
● Telco
● IoT
● HIPAA
● GDPR
● Sensitive enterprise functions
● Defense
● Human Rights NGOs
● ...



Virtualization Stack

Middleware

Userspace

Kernel

Firmware

Hypervisor

BIOS | EFI

CPU | Management Engine

Bootloader

Application



Container Stack

Middleware

Userspace

Container Engine

Firmware

Bootloader

BIOS | EFI

CPU | Management Engine

Hypervisor

Kernel

Application



Virtualization Stack
as seen by xkcd (xkcd.com/2166)

https://xkcd.com/2166/


Trusted 
Execution
Environments



What’s a TEE?

Middleware

Userspace

Kernel

Firmware

Hypervisor

BIOS | EFI

CPU | Management Engine

Bootloader

ApplicationTEE



What’s a TEE?

Middleware

Userspace

Kernel

Firmware

Hypervisor

BIOS | EFI

CPU | Management Engine

Bootloader

ApplicationTEE

Only the CPU has access



What’s a TEE?

Middleware

Userspace

Kernel

Firmware

Hypervisor

BIOS | EFI

CPU | Management Engine

Bootloader

ApplicationTEE

Only the CPU has access

What happens when 
other layers try to 
access?



What’s a TEE?

Middleware

Userspace

Kernel

Firmware

Hypervisor

BIOS | EFI

CPU | Management Engine

Bootloader

ApplicationTEE

Only the CPU has access

What happens when 
other layers try to 
access?

Blocked by CPU



Trusted Execution Environments

TEE

TEE is a protected area within the 
host, for execution of sensitive 
workloads

Host



TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Environments

TEE

TEE is a protected area within the 
host, for execution of sensitive 
workloads

Host



TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Environments

TEE

Host

Q. “But how do I know that it’s a 
valid TEE?”

Tenant



TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Summary

Tenant
TEE

Q. “But how do I know that it’s a 
valid TEE?”
A. Attestation

Host Attestation



TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Summary

Tenant
TEE

Attestation

Attestation includes:
● Diffie-Hellman Public Key
● Hardware Root of Trust
● TEE Measurement

Code + Data
(Encrypted)

Host



Trusted Execution Models

1. Attestation is discussed here: https://patents.google.com/patent/US20190042463A1/en?oq=20190042463

Process-Based

● Intel SGX (not upstream)
● RISC-V Sanctum (no hardware)

VM-Based

● AMD SEV
● IBM PEF (no hardware)
● Intel MKTME (no attestation¹)

Not a TEE: TrustZone, TPM

https://patents.google.com/patent/US20190042463A1/en?oq=20190042463


Trusted Execution: Process-Based

PROS

● Access to system APIs from Keep

CONS

● Unfiltered system API calls from Keep
● Application redesign required
● Untested security boundary
● Fantastic for malware
● Lock-in



Trusted Execution: Virtual Machine-Based

PROS

● Strengthening of existing boundary
● Run application on existing stacks
● Bidirectional isolation
● Limits malware

CONS

● Hardware emulation
● Heavy weight for microservices
● CPU architecture lock-in
● Duplicated kernel pages
● Host-provided BIOS



Introducing 
Enarx



The Enarx 5-bullet overview

● Uses TEEs (SGX, SEV, etc.) for confidential workloads



The Enarx 5-bullet overview

● Uses TEEs (SGX, SEV, etc.) for confidential workloads

● Easy development and deployment using Wasm



The Enarx 5-bullet overview

● Uses TEEs (SGX, SEV, etc.) for confidential workloads

● Easy development and deployment using Wasm

● Strong security design principles



The Enarx 5-bullet overview

● Uses TEEs (SGX, SEV, etc.) for confidential workloads

● Easy development and deployment using Wasm

● Strong security design principles

● Cloud-native → Openshift, kubernetes



The Enarx 5-bullet overview

● Uses TEEs (SGX, SEV, etc.) for confidential workloads

● Easy development and deployment using Wasm

● Strong security design principles

● Cloud-native → Openshift, kubernetes

● Open source: project, not production-ready (yet)



Where do we want to be?

Enarx



What’s the full picture?

27

Enarx Keep

“Server” “Client”

Tenant

Attestation 
handshake

Workload 
delivery 

(encrypted)

Host
CPU + 

firmware

Workload runs



Enarx Architecture

VM-Based
Keep

Process-Based
Keep

SGX

Sanctum

SEV

PEF

WebAssembly

WASI

Language Bindings (libc, etc.)

W3C
standards

Application

MKTME



Enarx Architecture

VM-Based
Keep

Process-Based
Keep

SGX SEV

WebAssembly

WASI

Language Bindings (libc, etc.)

W3C
standards

Application

Intel AMD



Breaking things down with SGX

Process-Based
Keep

SGX

Application



Breaking things down with SGX

Process-Based
Keep

Application

SGX



Breaking things down with SGX

Process-Based
Keep

SGX

Application



CONFIDENTIAL Designator

SGX demo

https://docs.google.com/file/d/1t_j-HzQyM0B_mEg_cP6vGaEjTLJnBk_9/preview


Breaking things down with SEV

VM-Based
Keep

SEV

Application



Breaking things down with SEV

VM-Based
Keep

SEV

Application



Breaking things down with SEV

VM-Based
Keep

SEV

Application



CONFIDENTIAL Designator

SEV demo

https://docs.google.com/file/d/12j-bPD3La2ld84w7q2HhTM5hJQIgrVf4/preview


Where we’d like to be

VM-Based
Keep

SEV

Process-Based
Keep

SGX

Application



Where we’d like to be

VM-Based
Keep

SEV

Process-Based
Keep

SGX

Application



Where we’d like to be

VM-Based
Keep

SEV

Process-Based
Keep

SGX

Application Application

Same binary



Where we’d like to be
Where we are

VM-Based
Keep

SEV

Process-Based
Keep

SGX

Application Application

Same binary



CONFIDENTIAL Designator



CONFIDENTIAL Designator



Layers - process-based Keep

Trusted via 
Measurement

Root of Trust

Distrusted

CPU (Intel)
Kernel
Loader
Shim

WASM (JIT)
WASI

Application

Enarx

Silicon architecture-dependent

Enarx Keep

Silicon architecture-dependent



Layers (now) - process-based Keep

CPU (Intel)
Kernel
Loader
Shim

Application

Enarx



Layers - VM-based Keep

Trusted via 
Measurement

Root of Trust

Distrusted

CPU (AMD)
Kernel

Loader (VMM)
Shim

WASM (JIT)
WASI

Application

Enarx

Silicon architecture-dependent

Enarx Keep

Silicon architecture-dependent



Layers (now) - process-based Keep

CPU (AMD)
Kernel

Loader (VMM)
Shim

Application

Enarx



Where we’d like to be
Where we are

Same binary

CPU (AMD)
Kernel

Loader (VMM) 
Shim

ELF static-PIE binary

Enarx

Kernel
Loader
Shim

CPU (Intel)

ELF static-PIE binary

Enarx



Where we’d like to be next

One binary

CPU (AMD)
Kernel

Loader (VMM) 
Shim

Enarx

Kernel
Loader
Shim

CPU (Intel)

Wasm binary

WASM (JIT)
WASI

Enarx



We are an open project

50

● Code
● Wiki
● Design
● Issues & PRs
● Chat
● CI/CD resources
● Stand-ups
● Diversity

✓ GitHub
✓ GitHub
✓ GitHub
✓ GitHub
✓ Rocket.Chat (Thank you!)
✓ Packet.io (Thank you!)
✓ Open to all
✓ Contributor Covenant CofC



We Need Your Help!

51

Website: https://enarx.io

Code: https://github.com/enarx

License: Apache 2.0

Language: Rust

Daily stand-ups open to all! 
Check the website wiki for 
details.

https://enarx.io
https://github.com/enarx


We Need Your Help!

52

Website: https://enarx.io

Code: https://github.com/enarx

License: Apache 2.0

Language: Rust

Daily stand-ups open to all! 
Check the website wiki for 
details.

https://enarx.io
https://github.com/enarx


Questions?

https://enarx.io

https://enarx.io

