WARS OF THE MACHINES

BUILD YOUR OWN SEEK AND DESTROY ROBOT

WHO AM I ?

- Senior Security Researcher @ digital.security
- Definitely **not** a ML expert / data scientist
- Love learning new things !

INTRODUCTION

MACHINE LEARNING SCOOL Purity

LOOKS AWESOME Pl. security

DEEPFAKES !

I'M GOING TO LEARN ML

- That's a **challenge** for me
- I have no clue what I'm doing
- Nevermind, I'll learn (as usual)

MY LITTLE PROJECT

MY LITTLE PROJECT

• I need to start small

digital.security **MY LITTLE PROJECT**

- I need to start small
- I need something that will give some **results shortly**

digital.security **MY LITTLE PROJECT**

- I need to start small
- I need something that will give some **results shortly**
- Something related to **IoT security**, indeed

digital.security **MY LITTLE PROJECT**

- I need to start small
- I need something that will give some **results shortly**
- Something related to **IoT security**, indeed
- A tool that gives a big picture about IoT ?

 Scans and collect device info from HTTP services on known ports

- Scans and collect device info from HTTP services on known ports
- Automatically classifies these devices

- Scans and collect device info from HTTP services on known ports
- Automatically classifies these devices
- Provides an overview of customer-premises devices available on the Internet

- Scans and collect device info from HTTP services on known ports
- Automatically classifies these devices
- Provides an overview of customer-premises devices available on the Internet
- Can be used to create targeted attacks !

PREVIOUS RESEARCH

- All Things Considered: An Analysis of IoT Devices on Home Networks - **USENIX 2019, Kumar & Al.**
- ProfilloT: A Machine Learning Approach for IoT Device Identification Based on Network Traffic Analysis - Yair Medan & Al.

BUT HOW IS IT DONE ?

BUT HOW IS IT DONE ?

MACHINE LEARNING FOR Dummes Hackers

HOW CAN A MACHINE LEARN ?

HOW CAN A MACHINE LEARN ?

THE SAME WAY OUR BRAIN LEARNS.

HOW CAN A MACHINE LEARN ?

THE SAME WAY OUR BRAIN LEARNS.

(THANKS CAPT'N OBVIOUS...)

digital.security **TRAIN AND PREDICT**

- Train a machine to do a precise task (e.g. answer **"is there a cat in this image ?"**)
- Ask the trained machine to answer the same question on random images
- This is called **<u>supervised learning</u>**

THE PERCEPTRONal.security

TRAIN AND PREDICT

digital.security CLASSIFY

- Ask a machine to sort a set of images (e.g. group them by cats, dogs, etc.)
- The machine will find similarities between these images and group them
- This is called **unsupervised learning**

digital.security **EXAMPLE**

- We want to sort a set of data about vehicles
- Describe each vehicle
 - number of wheels
 - number of seats
- Let the machine do the rest !

digital.security **CLASSIFY**

K-MEANS CLUSTERING security

K-MEANS CLUSTERING

- Number of centroids (K) is **set at the beginning**
- If K is too low, groups will contain multiple subgroups
- If K is too high, groups will be spread among multiple centroids

OTHER ALGORITHMS (WE WON'T COVER)

- Fuzzy C-means: similar to K-means but data points are weighted
- Hierarchical Clustering

SUPERVISED VS. UNSUPERVISED

- Supervised learning is for training
 - Two datasets required
 - Training dataset needs associated results set
- Unsupervised learning finds relationships in chaotic data

SUPERVISED VS. UNSUPERVISED

- Supervised learning is a simple and effective method
- Unsupervised learning is more complex and subject to errors

DATASETS
DATASETS

- Datasets matter: if not correctly created, could lead to errors
- Datasets may be **biased**
- Splitting a dataset in two for training and testing is not that easy

FEATURE VECTOR

- feature: a measurable characteristic of our input data
- feature vector: a N-dimension vector containing features

HOW TO TURN DATA INTO A FEATURE VECTOR ?

COLLECTING AND CONVERTING DATA

SCANNING

- Scan the Internet for well-known HTTP ports
- Collect valuable data
- Turn every collected page into a **feature vector**

CREATING OUR DATASET

- HTTP headers
- HTTP body
- Web page screenshot

USING REQUESTS TO SCRAPE DATA

```
# Query page
result = requests.get(
  'http://%s:%d/' % (self.ip_address, self.port),
  timeout=1.0
headers = json.dumps(dict(result.headers))
body = result.text
# Report target
self.report_target(
  self.ip_address,
  self.port,
 headers,
  body
```

digital.security CHROMIUM + SELENIUM

self.driver.set_page_load_timeout(30)
self.driver.fullscreen_window()

...

Save screenshot
self.driver.save_screenshot(dest)

ANARCHY IN THE EUL.security

RESULTS

\$ sqlite3 targets.db
SQLite version 3.27.2 2019-02-25 16:06:06
Enter ".help" for usage hints.
sqlite> select count(*) from targets;
4901

digital.security **RESULTS**

Ju 9		Table 1	The second secon		A169	
and the second s						8
		04 ÷	fan Adepade Sapat			
an east of the local dist.						8
NVR Viet/Veren	in factor tended as pipes in our binary was been with and young his binary was binary and and an approximate				11.9.	
An observed and the state		Transformer and the second second		 		30

HOW TO MEASURE A WEB PAGE

HOW TO MEASURE A WEB PAGE

• content length: usually the same / device

HOW TO MEASURE A WEB PAGE

- content length: usually the same / device
- number of headers

HOW TO MEASURE A WEB PAGE

- content length: usually the same / device
- number of headers
- number of scripts, images and other tags

digital.security HOW TO MEASURE A WEB PAGE (BADASS MODE)

- Levenshtein distance to a reference page
- DOM tree structure flattening combined with Levenshtein distance
- Normalized page text size

LEVENSHTEIN DISTANCE (FTR)

- Measures the **difference** between two strings
- Gives a **positive integer** value
- The bigger the value, the bigger the difference

CREATING THE AUTOMATIC CLASSIFIER

SCIKIT-LEARN

- Python-based Machine Learning framework
- Built on NumPy, SciPy and matplotlib
- Implements major ML algorithms

RECORDS TO DATASET

```
import pandas as pd
```

```
def create_dataset_from_records(records):
    """
    Create a ML dataset from a list of records
    """
    lst = [ record_to_values(r) for r in records]
    return pd.DataFrame(lst, columns =[
        'headers','metas','scripts','images','bodysize'
])
```

```
from sklearn.cluster import KMeans
from sklearn import datasets
def classify(records):
    # create a dataset from our DB records
    dataset = create_dataset_from_records(records)
    # classify
    model = KMeans(n_clusters=0PT_CLUSTERS)
    model.fit(dataset)
    # return result
    return model.labels_
```

digital.security NUMBER OF CENTROIDS MATTERS

K=1000

BADASS FEATURE VECTOR ecurity

BASIC FEATURE VECTOR security

digital.security BADASS IS NOT THE BEST

- Levenshtein distance: two pages with same distance are not always identical
- DOM tree structure: a lot of devices rely on the same page structure (login)
- Normalized page size: Most of identical devices have same content length

BEST RESULTS Security

- 500 centroids
- Content length
- Number of various tags (img, meta, script)
- Number of HTTP headers

4767 213.183.189.11 80 6 1 0 0 120 0.0 0

ADDING METADATA

digital.security METADATA MAY HELP

- Metada can be useful for **searches**:
 - category: NAS, wireless router, etc.
 - vendor
 - product name/series
- What if we were able to automatically determine (at least) the **category** ?

ML-BASED METADATA

- Supervised learning: this is the way.
- We need a **reference dataset** with verified metadata
- Let's add **metadata** to our classified targets !

TRAIN A MODEL FOR EACH CATEGORY

- We create and train a **perceptron** for each category
- We need to have **enough input data** (i.e. targets)

digital.security **PERCEPTRON FOR CAMERA**

```
# Collect items from database
targets = list(IotTarget.select())
```

```
# Only keep items that ARE cameras
result = [1.0 if (item.category == 'camera') else 0.0
for item in targets
```

```
# Build a dataset
dataset = create_dataset_from_records(items)
```

```
# Create and train our perceptron
ppn,scaler = create_mlc(dataset, result)
```

USING A MULTI-LAYER PERCEPTRON (MLP)

```
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler
```

```
def create_mlc(dataset, resultset):
```

```
Create a multi-layer perceptron (MLP)
"""
```

```
sc = StandardScaler()
sc.fit(dataset)
std_dataset = sc.transform(dataset)
clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
    hidden_layer_sizes=(5,12,15 ),
    random_state=1)
clf.fit(std_dataset, resultset)
return (clf, sc)
```

GENERATING A MODEL FOR THIS CATEGORY

from joblib import dump

dump((ppn, scaler) , 'camera.model')

TESTING THE ACCURACY OF OUR MODEL

t_dataset = scaler.transform(dataset)
y_pred = ppn.predict(t_dataset)
print('Accuracy: %.2f' % accuracy_score(result, y_pred))

Accuracy: 0.94

WOW_digital.security

(PARTLY) REVEALING THE IOT LANDSCAPE

SCANNING THE DSL INTERNET

- I discovered almost 5,000 web services hosted on DSL IP adresses
- My tool helped me a lot to **sort this data**
- This is a **small dataset**, but seems **accurate**

RAW DATA

- 4895 web services detected
- 1501 categorized devices
- 3152 screenshots taken
- 34 MB of HTTP responses content

IOT DEVICES PER CATEGORY (%)

digital.security TOP 5 VENDORS

#	Vendor	devices
1	Hikvision	372
2	Dahua	117
3	Sonicwall	106
4	TP-link	85
5	Mikrotik	71

ML IDENTIFIED SIMILAR DEVICES BUT DIFFERENT BRANDS

BUT I ALSO FOUND MANY OTHER DEVICES

OT / IT

digital.security **PRETTY LIABLE CONTROLLER**

SIEMENS			
SIEMENS Welcome Please log on	Log on Name Password Language	Web User English to customized site Keep me logged on Log on	ReadMe OSS

WIND OF CHANGE

GNOI	RDEX	
	NC2 Wind Farm	Portal
lordex Control L	ogin	
Certificate	🕘 Secure 💿 Basic	
Client	The standard NC2 client	
Username		
Password		
	Login	
select Language		
Language	English	Ŧ

WHAT CAN POSSIBLY GO WRONG ? rity

WANNA Swipp?tal.security

WEAPONIZE

USING ML TO TARGET DEVICES

BUILDING EFFICIENT SCANNERS

- Identifying a category of devices is difficult ...
- ... unless you use a trained **perceptron**.

DEMO: SCANNING CAMERAS

GEOLOCATED CAMERA FEEDS

- Identify camera feeds (RTP/RTSP) from exposed cameras
- Try default usernames and passwords
- Geolocate IP address (geoip2)

DOCUMENT THEFT AND RANSOM

- Scan the Internet for NAS
- Bruteforce authentication (default passwords)
- Steal data, leave a note asking for bitcoins

SPECIFIC VULNERABILITY RESEARCH AND EXPLOITATION

digital.security LOOKING FOR QNAP QTS

- Recent vulnerabilities affecting QNAP NAS (preauth root RCE)
- It is possible to train a perceptron to detect QNAP NAS
- Search & destroy !

CONCLUSION

ML IS GREAT

- Unsupervised classifier allows quick devices review
- Multi-layer perceptron provides an easy way to create targeted tools, assign metadata
- Human is still required !

digital.security **TAKEAWAYS**

- Machine learning algorithms are easy to use with scikit-learn and Python
- Extra libraries required: requests, whoosh, sqlite3
- The most difficult part: picking the right features and building correct datasets

I WON'T RELEASE ANY SOURCE CODE

- All the **key material** is provided (code snippets, parameters, etc.)
- I learned a lot during this project, so will you 🔄
- Well, maybe because **my code is dirty** too...

THANK YOU FOR LISTENING

HOPE YOU ENJOYED THE TALK (****) DISCOVER NEW THINGS, EXPERIMENT, LEARN !

Twitter: @virtualabs

damien.cauquil@digital.security